The role of mixotrophic protists in the biological carbon pump
نویسندگان
چکیده
The traditional view of the planktonic food web describes consumption of inorganic nutrients by photoautotrophic phytoplankton, which in turn supports zooplankton and ultimately higher trophic levels. Pathways centred on bacteria provide mechanisms for nutrient recycling. This structure lies at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative new paradigm, which sees the bulk of the base of this food web supported by protist plankton communities that are mixotrophic – combining phototrophy and phagotrophy within a single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only during the developmental phases of ecosystems (e.g. spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists dominate in more-mature systems (e.g. temperate summer, established eutrophic systems and oligotrophic systems); the more-stable water columns suggested under climate change may also be expected to favour these mixotrophs. We explore how such a predominantly mixotrophic structure affects microbial trophic dynamics and the biological pump. The mixotroph-dominated structure differs fundamentally in its flow of energy and nutrients, with a shortened and potentially more efficient chain from nutrient regeneration to primary production. Furthermore, mixotrophy enables a direct conduit for the support of primary production from bacterial production. We show how the exclusion of an explicit mixotrophic component in studies of the pelagic microbial communities leads to a failure to capture the true dynamics of the carbon flow. In order to prevent a misinterpretation of the full implications of climate change upon biogeochemical cycling and the functioning of the biological pump, we recommend inclusion of multi-nutrient mixotroph models within ecosystem studies.
منابع مشابه
Establishment of microbial eukaryotic enrichment cultures from a chemically stratified antarctic lake and assessment of carbon fixation potential.
Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low...
متن کاملMixotrophy everywhere on land and in water: the grand écart hypothesis.
There is increasing awareness that many terrestrial and aquatic organisms are not strictly heterotrophic or autotrophic but rather mixotrophic. Mixotrophy is an intermediate nutritional strategy, merging autotrophy and heterotrophy to acquire organic carbon and/or other elements, mainly N, P or Fe. We show that both terrestrial and aquatic mixotrophs fall into three categories, namely necrotrop...
متن کاملAn unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming.
Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change an...
متن کاملUse of Carbon dioxide versus air blower in on-pump beating-heart coronary artery bypass surgery
Introduction: The use of carbon dioxide blower has been recognized as the standard of care in patients undergoing beating coronary artery bypass grafting (CABG) due to higher solubility and lower risk of embolization. On the other hand, the compressed air blower has gone out of use since air can be easily trapped and is less soluble which can cause coronary embolism. The prese...
متن کاملThe role of phytoplanktonic size fractions in the microbial food webs in two north Patagonian lakes (Argentina)
A current concept concerning organic matter dynamics within pelagic food webs consists of two processes: the traditional food web (nutrients – phytoplankton – zooplankton – fish), which considers that the phytoplankton is the dominant ‘producer’, and the microbial loop (AZAM et al. 1983), which implies that a portion of matter and energy flows through unicellular organisms, such as bacteria, to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014